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A new method for the numerical solution of the 3D Navier-Stokes 
equations written in terms of vorticity-velocity is presented. The advan- 
tages of this formulation with respect to primitive variables and vor- 
ticity-vector-potential ones are discussed in view of physical as well as 
engineering applications. A suitable form of the continuum equations, 
the most appropriate discretization scheme, and variable location in 
order to guarantee the solenoidality of the velocity and vorticity fields 
are introduced and justified. A 30 lid driven cavity problem for 
400 C Re $3200 is chosen as a test case for comparison and validation 
purposes. A parallel implementation of the method as been performed 
on a shared memory architecture mainframe. Speedup results and 
efficiency considerations are given and discussed. 0 1993 Academic 

Press. Inc. 

1. INTRODUCTION 

In the last decade, developments in computer hardware 
technology, in particular the availability of vector and 
parallel processors, have allowed the numerical treatment of 
complex three-dimensional (3D) flow fields. The discussion 
about the most appropriate mathematical formulation of 
the Navier-Stokes equation to simulate these flows is still 
open, being the choice strictly dependent on the problem 
domain and boundary conditions. 

The mathematical formulations of the 3D Navier-Stokes 
equations may be classified into the following categories, 
depending on the choice of dependent variables, as 
primitive variables [ 11, vorticity-vector-potential [2], and 
vorticity-velocity [3, 41. For a general review of the 
peculiarities of the three formulations we refer to [ 51, where 
a large number of references are mentioned and not 
repeated here. 

In this paper we present a numerical method for the study 
of steady 3D flows which is based on the vorticity-velocity 
formulation of the Navier-Stokes equations. This formula- 
tion has the distinct advantage, with respect to the other 
two, when applied to some categories of problems. First, the 
vorticity-velocity (o-u) formulation is simpler than the 

primitive-variable one (u, P), since the pressure does not 
appear explicitly in the field equations and thus the well- 
known difficulty connected with the determination of the 
pressure boundary value in incompressible flows is avoided 
[6]. Furthermore, as demonstrated in [7], the o-u form 
has a striking advantage when applied to problems in a non- 
inertial frame of reference because the non-inertial effects 
only enter into the solution of the problem through the 
implementation of the boundary conditions. From the com- 
putational point of view the solution of the elliptic pressure 
equation in the primitive-variable formulation requires 
most of the computer effort, increasing with the number of 
mesh points; e.g., about 50% of CPU time is taken by the 
pressure solver using 24,500 mesh points [S], and about 
80% using 116,000 mesh points [9]. Moreover, as pointed 
out by [lo] in the study of external attached flows, ‘the 
region in which the vorticity is computationally negligible is 
large and the rotational region is located in the boundary 
layer and in the wake. This means that the vorticity trans- 
port equation has to be solved only in these last-mentioned 
regions. On the other hand, the primitive variable formula- 
tion is more versatile when pressure boundary conditions 
are prescribed. Furthermore, in multiconnected problems 
the condition for the pressure to be single valued is explicitly 
satisfied [ 111. 

On comparing the proposed o-u method with the 
vorticity-vector-potential formulation, only the kinematic 
aspect has to be considered because the dynamic aspect is 
governed by the vorticity transport equation in both for- 
mulations. The adoption of the vector potential determines 
a velocity field that identically satisfies the mass conserva- 
talon equation. But the vector potential itself is not uniquely 
defined; it is defined except for a gradient of a harmonic 
scalar quantity which allows for a multiplicity of boundary 
formulations for the vector potential equations [12]. 
Furthermore, the study of through-flow problems requires 
the introduction of a further dependent variable which is the 
scalar potential [ 121. 

In the past few years the authors have been involved in 
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the development and application of the vorticity-velocity 
form of Navier-Stokes equations. The basic 2D mathemati- 
cal and numerical formulation is described in [ 131. 

The purpose of the present paper is to give a systematic 
description of the 3D version of the method which has 
been previously applied by the authors with regards to 
Raileigh-Btnard convection [ 14, 151, implementation on a 
parallel computer [16], and comparison with vorticity- 
vector-potential formulation [ 173. 

Particular attention is given here to the numerical tech- 
nique which may be summarized in the following steps: 

(1) The variables are located on a staggered grid in 
order to satisfy the continuity equation and the solenoid- 
ality constraint on the vorticity on individual cells. 

(2) The equations are discretized by second-order 
accurate central differences on a uniform mesh. * 

(3) The conservative form is adopted for the vorticity 
transport equation in order to verify conservation of the 
mean vorticity and solenoidality of vorticity. 

(4) The false transient method used in [13] is adopted 
to speed up the convergence of the numerical method, 
so that the governing equations are parabolized in time with 
a result that they are solved exactly at the steady state 
only. 

(5) An alternating direction implicit (ADI) method of a 
scalar type proposed by [ 181 is used to integrate in time the 
six equations governing o and u. 

(6) The numerical procedure is implemented in a 
vectorized and parallelized code designed to run efficiently 
on a vector and parallel computer for a typical mesh up to 
101 x 101 x 101 points. 

The method is applied to the test problem of the laminar 
steady flow at Re < 3200 in a cubical driven cavity; 
comparison with other numerical [l] and experimental 
results [ 193 are presented. 

2. VORTICITY-VELOCITY FORMULATION 
OF NAVIER-STOKES EQUATIONS 

2.1. Mathematical Formulation 

The nondimensional Navier-Stokes equation of a 
laminar flow of an incompressible Newtonian fluid is 

g+(u.v)u= -vp+&v2u. (1) 

Here Re is u’L/v, where u’ is the reference velocity, L is the 
reference length, and v is the kinematic viscosity. 

The Lagrange form of the advective term that is more 

suitable for deriving the vorticity transport equation is 
obtained from the following vectorial identity, 

ux(Vxu)=~v(U.U)-(U.V)U, (2) 

and substituting the vorticity definition, ox u in (2) the 
form of the Navier-Stokes equation follows: 

au 1 
~+,v(u.u)+(wxu)= -vp++&v2u. (3) 

The vorticity transport equation is then derived by applying 
the curl operator to both terms of (3): 

(4) 

This 3D form is called conservative in analogy with the 
well-known 2D conservative form of the vorticity transport 
equation that can be derived by a simple projection of (4) 
on the x1-x2 plane. 

The velocity equations are derived by applying the curl 
operator to the vorticity definition, 

vxo=vx(vxu)=v(v.u)-v2u (5) 

and using the continuity equation for incompressible flows 
V. u = 0, the following kinematic relation is obtained: 

v2u= -vxo. (6) 

Note that (6) can be regarded also as a consequence of 
the Helmholtz decomposition theorem, in which only the 
vertical velocity is present. 

2.2. Boundary Conditions 

The present formulation in terms of derived variables 
leads to a simpler way to enforce the proper boundary 
conditions that what is allowed by the primitive variable 
formulation, whenever the pressure does not appear as 
a known value on the boundary. On the other hand, the 
problem of the difficulty of determining the vector-potential 
boundary conditions in the vorticity-vector-potential for- 
mulation [20] is overcome in the present one. In a general 
problem the boundary conditions associated with Eqs. (4) 
and (6) are: 

- the boundary condition associated with Eq. (4) is the 
vorticity definition written on the boundary 

0, = (V x u),. (7) 

As discussed in Section 2.4, this condition is essential for the 
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conservation of the solenoidality of vorticity field, but 
it requires the solution of the coupled problem for the 
conservation of mass. 

- the boundary condition associated with the elliptic 
velocity equation (6) is the velocity vector assigned on the 
edges of the solution domain 

u=ii (8) 

(e.g., u = 0 on a solid wall of a body, corresponding to no 
slip and impermeability conditions). 

The specialized form of these boundary conditions is 
presented below for the test case. 

2.3. Mass Conservation 

In the present formulation, the solenoidality constraints 
on the velocity field are implicitly satisfied by the equation 
system (4) and (6), because this has been derived by the 
differential manipulation from the Navier-Stokes and 
mass conservation equations in primitive-variable form, as 
described in Section 2.1. Let us note that the kinematic 
equations (6) and the velocity boundary conditions (8) 
cannot assure a solenoidal velocity field for an arbitrary 
vorticity distribution [21], so this property may be assured 
only by coupling equations (4) and (6). In any event, an 
analogous coupling of the dynamic and kinematic aspects 
is required also for primitive-variable and vorticity-vector- 
potential formulations as was demonstrated by [6,22]. In 
analogy with vorticity-vector-potential formulation [22], 
the decoupling of the two aspects should require in the 
present formulation as well, either a numerical coupling 
between kinematic and dynamic equations or an integral 
condition on the vorticity field. To these authors’ 
knowledge, as also stated by [S], this integral condition has 
not yet been derived. Therefore, we pay particular attention 
in the coupled solution of Eqs. (4) and (6), as is explained 
in Section 3.1. 

2.4. Solenoidality of Vorticity Field 

A very important condition to enforce in the computation 
of flow fields is the solenoidality of vorticity. This condition 
is identically satisfied in 2D problems, due to the 
orthogonality between the vorticity vector and the plane 
of motion. On the other hand, this condition has to be 
enforced in some way in 3D problems. For this purpose, let 
us demonstrate now that the form of the advective term in 
Eq. (4) is essential for a straightforward satisfaction of 
this constraint. In fact by applying the divergence operator 
to Eq. (4) the advective term vanishes and the equation 

governing the divergence of vorticity reduces to the simple 
diffusive equation 

aDo 1 
--ReVzDw=O, at 

where Do is the divergence of vorticity 

Do=V.o (10) 

that has to be zero as stated above. Equation (10) is 
completed by the initial condition Do( t = 0) = 0 and by the 
boundary condition 

[Do],= [V.Vxu],=O 

which is homogeneus, since the vorticity definition is 
satisfied: (i) explicitly on the boundary by Eq. (7), 
(ii) implicitly in the bulk of the fluid field by the kinematic 
relations (6). 

Equation (10) governs the conservation of the divergence 
of o, via a diffusive homogeneous equation of Do with 
homogeneous boundary and initial conditions. This equa- 
tion admits only the trivial solution Do(t) = 0. Further- 
more, if a nonphysical initial condition is enforced, leading 
to Do( t = 0) # 0, Do(t) tends to zero for t going to infinity. 
This is very important if a steady state solution is to be 
found asymptotically via an iterative procedure. These 
considerations confirm that the solenoidality condition on 
the vorticity is implicitly imposed at the continuum level 
by writing the vorticity transport equation (4) with the 
vorticity definition used to determine boundary conditions. 

3. DISCRETIZED SCHEME 

3.1. Time Integration and Iterative Procedure 

As was explained in Section 2, the solenoidality con- 
straints on velocity and vorticity fields require a coupled 
solution of the system given by Eqs. (4) and (6), with 
boundary conditions (7) and (8). Unfortunately, the 
number of unknowns in 3D domains discourages the use of 
a direct solver for the entire problem. Furthermore, an 
iterative procedure is also needed due to the presence of the 
non-linear advective term in Eq. (4). 

In the proposed numerical method the necessary iterative 
procedure for steady state solution is based on a false tran- 
sient method [23], which solves the parabolic equation (4) 
and the following parabolized version of the velocity 
equation 

au 
a--V’u-Vxx=O, at 
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where u is a relaxation parameter. It is obvious that the 
steady state solution is reached when the time derivatives 
approach zero. On the other hand, the solution of an 
unsteady flow requires an inner loop on the iterative proce- 
dure for each physical time step [24]. The time integration 
procedure is performed using a simple AD1 algorithm on 
each scalar equation [ 181. 

3.2, Spatial Discretization 

The finite difference approximation (FD) of the govern- 
ing equations are derived by replacing the time derivatives 
with forward differences and the spatial first- and second- 
order derivatives with second-order central differences. 

The location of the staggered variables is shown in Fig. 1. 
Assuming the corner (i, j, k) as the reference point, the 
following localization of the variable results: - 

l Ul (i,j- $, k- f) 

l u2 (i-$,j,k-$) 

l u3 (i- f,j- f, k) 

l 01 (i - $, j, k) 

l 02 (&j-f, k) 

l 03 (i,j, k - f). 

The staggering of the variable location (Fig. 1) is chosen not 
only to obtain the maximum accuracy of the discretized 
derivatives, but, also to ensure the conservation of mass and 
vorticity at the discrete level; something which, as explained 
in the previous section, is not explicitly nor identically 
imposed in the present formulation. By analogy with the 
two-dimensional case [13], it is possible to satisfy mass 
conservation, to round-off-error level, if the velocity compo- 

nent ui is located at the middle of the face of the computa- 
tional cell which is normal to xi. In this way the computa- 
tional molecule may be regarded as a control volume for 
mass conservation, which is satisfied to round-off-error level 
on each individual computational cell. Similarly, each vor- 
ticity component is located at the mid-point of the edge of 
the cell parallel to the corresponding axis, and a control 
volume, shifted by a half spatial step in the three directions, 
is considered to impose the solenoidality of vorticity. 
Furthermore, the proposed staggered variable location 
guarantees in the two-point formula an accuracy of (6~/2)~ 
in the discretization of the first derivative instead of 6x2, 
that can be obtained using a not staggered variable location. 
This is particularly clear in the computation of the 
right-hand side of Eq. (6). 

The correct location of the variables of the problem is 
found by using the general rule of applying the discrete 
operators. This rule cannot be used in a straightforward 
manner in discretizing the nonlinear terms. In fact, as is 
shown in the following discrete manipulation of Eq. (4), the 
staggered variables location is not sufficient to ensure the 
solenoidality of vorticity field in the discrete form, but it is 
also required that, in obtaining the FD approximation for 
the advective term, V x (o x u), all needed averaging is per- 
formed on the product (w x u) and not on the individual w 
and u terms. 

Let us consider as an example the two terms which 
follow from the vorticity transport equation for o1 and o3 
differentiated with respect to x1 and x3, respectively: 

FIG. 1. Computational molecule showing the 3D staggered mesh. The reference point (i,j, k) is marked with ( l ), 
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where 6 represents the discrete derivative. Here and in 
the Eqs. (14)-( 19) the superscript defines the quantities 
computed by an interpolation operation and the subscript 
defines quantities located in the computational mesh points 
(Fig. 1). The first term of Eq. (13) may be manipulated as 

(14) 

where 

=& ((03u1)i~1/2jk+1/2-(03111)i--1/2jk--1/2} (15) 

and 

(03U1)i--1/2jk-,1/2=t[(03U1)ijk--1/2+(03U1)i--jk--1/2l. 

(16) 

The velocity u1 in i- l,j, k- 4 is 

(U1)i-ljk --/2=~CUli-,j+l,2k-l,z+Ul,-,,-,j*n-lj21. (17) 

In a similar manner, the complete discrete form of the first 
term of (14) may be found. The second term of (13) in 
discrete form is given by 

(18) 

where the explicit expression of the second term on the 
right-hand side is 

=- 
21x [( 03u1)i+ljk-l/2-(~3u1)i-ljk-11/21* (19) 

1 

Let us note now that the second term of the right-hand 

(21) 

side of (19) is identically balanced by the corresponding 
term in (16) and, similarly, the other terms will cancel each 
other. This means that the solenoidality of vorticity is 
governed by Eq. (9) at the discrete level as well because the 
discrete term V x (o x u) is identically zero. Consequently 
V. o is satisfied to the round-off-error level in the computed 
solution. 

3.3. Vectorization and Parallelization Technique 

The proposed AD1 method is particularly suited for both 
vectorization and parallelization. For example, let us 
consider the first component of the kinematic relations (12), 
which due to the splitting operated by the Samarskii- 
Andreyev ADI, is reduced to a tridiagonal system of the 
form 

aiui-Ijk+biUijk+CiUi+ljk=di, (20) 

where 

At ai= -- 
a Ax2 

bi=l+$$ 

At 
CiC -- 

a Ax2 

di = R( ujjk) 

and R(uijk) is the residual of the discretized form of Eq. (12). 
In this way Nj x Nk linear systems of type (20) are obtained. 
Each system is written for a line of unknowns (j, k). As is 
clear from definitions (21) the various linear systems are 
decoupled because the coefficients ai, bi, ci, di do depend 
on the values of the unknowns at the previous time step. 
So the linear systems can be written together and 
solved simultaneously, and the complete vectorization and 
parallelization of the code is obtainable. 

This technique is particularly suited for 3D problems 
because the length of the generated vector (number of 
different linear systems) is in general very large, being 
connected with the product of the two residual dimensions 
Nj and Nk as shown in the previous example. Hence, for a 
typical 3D mesh of 101 x 101 x 101 the length of the vector 
is of the order of 10.000. 

Due to the limitation of the section size of the vector 
register (e.g., 128 or 256 for IBM3090VF and 64 for CRAY- 
XMP) it is not possible to process the whole vector in a 
single step. Hence, a combination of vector and parallel 
strategies can be used to speed up the numerical solver. 
Therefore, the vector is split in segments devoted to different 
tasks and processed by the first available CPU [ 16 3. The 
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TABLE I 

Mesh Sensitivity to Degrees of Freedom (Symmetry Assumed) and Extrapolation for Zero Mesh Size 

Mesh DOF “I min Percentage of error 4 max Percentage of error u2 min Percentage of error 
- 

A 92256 -0.22036 21.9 0.19656 20.6 -0.36198 17.1 
B 230850 -0.24553 12.9 0.21547 12.9 -0.38389 12.1 
C 727218 -0.26290 6.8 0.23097 6.7 -0.40942 6.2 
D 2509446 -0.27255 3.4 0.23939 3.3 -0.42334 3.1 

Extr. -0.28203 0.24747 - -0.43669 

Note. u , min is evaluated on the vertical centerline; u2 rnax and ur min are evaluated on the horizontal centerline; percent errors are evaluated with respect 
to the extrapolated solution. Mesh types are: (A) 31 x 31 x 16, (B) 45 x 45 x 19, (C) 67 x 67 x 27, (D) 101 x 101 x 41. 

numerical implementation of the parallel version of the code 
is obtained using IBM Parallel FORTRAN DISPATCH 
statement. 

The length of the segments per task should be selected to 
be large enough to do enough work to justify the process 
allocation, but small enough to allow a flexible process 
dispatching. 

In the frame of an optimal use of a multiple vector 
facilities, the vectorial architecture suggests to select a 
dimension of the task that equals the section size of the vec- 
tor register (128 for a IBM3090 mod.E) or a multiple of it. 
Preliminary tests have demonstrated that the task with 128 
elements guarantees a negligible relative dispatching over- 
head and therefore has been selected for the present work. 

Furthermore, this way of parallelization does not modify 
the natural sequence of the program and the obtained 
results are bit by bit identical. 

4. RESULTS 

The lid-driven flow in a cubic cavity (1 x 1 x 1) shown in 
Fig. 2 is the natural extension to 3D of the 2D driven cavity 

a I-0 -I 

test case, which has been widely used for validation and 
comparison purposes. The reason of this choice results from 
the simplicity of the geometry and from the number of 
numerical and experimental results available. In the present 
work we consider a Re range up to 3200 for which steady 
transversal vortices are expected to be present. A typical 
mesh up to 101 x 101 x 81 points is employed. Symmetric 
boundary conditions on the third direction have been 
adopted in many of the computations to reduce the number 
of unknowns. A mesh of 101 x 101 x 101 is used only in the 
parallel computations. 

4.1. Mesh Sensitivity 

The study of mesh dependence has been conducted first to 
validate the grid adopted in obtaining the results presented 
in the paper. We have selected the case at Re = 1000. The 
mesh on a half of the domain is varied from 31 x 3 1 x 16 to 
101 x 101 x 41 (symmetry assumed), corresponding to a 
number of degrees of freedom (DOF) from 92,256 to 
2,509,446. The results of the mesh sensitivity analysis are 
presented in Table I in terms of the maximum vertical and 

b 

FIG. 2. Sketch of the cubic driven cavity (a); boundary conditions, and standing vortices on xi-xz midplane (b). 
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x2 a 
1 

0.9 

0.8 

0.7 

0.6 

0.5 

0.4 

0.3 

0.2 

0.1 

0 
-0.4 -0.2 0 0.2 0.4 0.6 0.8 1 

u2 b 

Ul Xl 

FIG. 3. Velocity profiles for Re = 400: (a) u, component on vertical centerline; (b) u2 component on horizontal centerline. 

a 

I  
I  I  I  I  I  ,  I  J 

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 

c 
b 

FIG. 4. Velocity vectors plots for Re = 400 projected on: (a) x,-x2 midplane; (b) x,-x3 midplane; (c) x,-x, midplane. 
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x2 
1 

0.9 

0.8 

0.7 

0.6 

0.5 

0.4 

0.3 

0.2 

0.1 

0 

* Ku et al. 119671 

+ 2D 67X67 -+- 2D 67x67 

-0.4 -0.2 0 0.2 0.4 0.6 0.8 1 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 

Ul Xl 

FIG. 5. Velocity profiles for Re = 1000 on: (a) vertical centerline; (b) horizontal centerline. 

r 

b 

FIG. 6. Velocity vectors plots for Re = 1000 projected on: (a) x1-x2 midplane; (b) x,-x3 midplane; (c) x,-x, midplane. 
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b 

RE - 1999 m, 1 0.999 e.139 9.49 

FIG. 7. Particle tracking showing that the flow in the downstream secondary eddy is towards the end wall (Re = 1000). 

reversal velocities. The convergence analysis based upon the 
data presented in Table I indicates that the order of the 
method is around 1.7. 

4.2. Driven Cavity 

The results for Re = 400 are shown in Figs. 3 and 4. 
In Fig. 3 the velocity profiles of the u1 component on the 
vertical centerline and the u2 component on the horizontal 
centerline of the plane x3 = 0.5 are compared with the 
results of [ 11, obtained by a pseudo-spectral method using 
25 x 25 x 25 modes. A good agreement is shown both in 
positions and values of the extremes velocity. The 2D solu- 
tion [ 131 is also superimposed in Fig. 3 so that the side wall 

effect is clearly exhibited by the reduction of the extreme 
velocities. The velocity vector plots projected onto three 
orthogonal midplanes are displayed in Fig. 4. The plots in 
planes xi -x3 (b) and x2 - xj (c) clearly demonstrate that 
the flow is completely 3D even at this low Re. Let us note 
that not only the flow structure of the velocity field seems 
similar to that shown in Fig. llc of Cl], but also, that the 
position of the transversal vortex core (Fig. 4b) quan- 
titatively evaluated from Fig. 11 of [ 11, agrees satisfactorily 
(maximum difference 5%) with that computed in the 
present work (Table II). 

Results for Re = 1000 are presented in Figs. 5-9. The 
velocity profiles obtained by 101 x 101 x 41 mesh (sym- 
metry assumed) shown in Fig. 5 are compared with the 3D 

89 - 1m No 1 0.b e.W9 0.49 

FIG. 8. Particle tracking showing that the flow in the 

V 7 Y 
RE = 1W No 1 0.098 @*es6 Q.49 

1 secondary eddy is towards the end wall (Re = 1000). 
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RL n lo.0 No 1 o.ti a.Qaa 0.4 * RE - loo0 lw 1 0.@98 e.98@ 0.4 

FIG. 9. Particle tracking showing that the spiralling out is toward the end wall and the spiralling in is toward the middle plane (Re = 1000). 

FIG. 10. Velocity vectors plots for Re = 2000 projected on: (a) x,-x* midplane; (b) x,-x3 midplane; (c) x,-x, midplane. 

581/106/2-7 



296 GUJ AND STELLA 

b 

FIG. 11. Particle tracking showing the inclination of the trajectory in the upstream secondary eddy due to the presence of cross rolls (Re = 2000). 

solution obtained by [ 1 ] with 30 x 30 x 30 modes. The 2D that of the main one so that the effect of these cross rolls is 
solution obtained with 67 x 67 mesh is also superimposed in only to give an inclination of the trajectories. This inclina- 
Fig. 5, and the side wall effect is exhibited in a manner tion is evident in the path of particles in the downstream 
similar to that of Fig. 3. The velocity vector plots of Fig. 6b secondary eddy in Fig. 1 lb. The overall structure for 
show the onset on the transversal plane of a counterrotating Re = 2000 (Figs. 11 and 12) does not change too much from 
vortex, which grows with Re, see Fig. lob. The two corner the one discussed for Re = 1000. At Re = 2000 a very small 
vortices in the longitudinal plane Figs. 7-8 counterrotating recirculation appears upstream at the top of the cavity (see 
with respect to the main one give a flow from the symmetry Fig. 12). The corner vortex found experimentally by [19], 
plane to the end wall (Figs. 7 and 8). In the same direction for a cavity with a spanwise aspect ratio (SAR) 3 : 1 is not 
there is the spiralling out of the main roll (Fig. 9). On the present in the obtained numerical results for SAR of 1: 1. 
contrary, in the core region of the main vortex a spiralling Let us observe that the transversal rolls at the bottom of 
in is present, giving a net flux from the end wall toward the Fig. lob tend to stretch at increasing Re. A preliminary 
symmetry plane (Fig. 9). The spiralling has the form dis- study conducted at Re just beyond the critical value for 
cussed by Mallison and de Vahl Davis [2]. Even at this Re 
the qualitative and quantitative comparison with Fig. 14 of 
[ 1 ] gives a satisfactory agreement (maximum difference 
6 % in Table II). 

The velocity-vector plot of Fig. 10 clearly demonstrates 
the formation of steady transversal vortices, which are pre- 
sent in both xi - xj and x2 - xj planes (Figs. lob and lOc), 
respectively. As it is clear from the trackings of Fig. 1 lb the 
strength of these transversal rolls is small compared with 

TABLE II 

Positions of the Center of the Transversal Vortices 

Re Ku et al. [ 1 ] 

X2 x3 

400 0.216 0.201 
1000 0.146 0.135 
2000 - 

Note. Themeshis31x31x31. 

Present 

x2 x3 

0.227 0.197 v 
0.155 0.134 RL=2999 Ia 1 ..@a e.s.0 0.49 

0.155 0.120 
FIG. 12. Particle tracking showing the downstream secondary eddy 

(Re = 2000). 
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0.45, 1 TABLE IV 

300 
Re 

3000 

FIG. 13. Dimension of the downstream secondary eddy D, as a 
function of Re. 

transition to the unsteady periodic solutions shows that 
each of these rolls seems to split in two, leading to a flow 
structure similar to that found at Re = 3200 numerically by 
[8] in a cube and experimentally by [19] in a box with a 
SAR of 3 : 1. At Re = 3200 [8] found that the solution falls 
in the unsteady region of the parameter space, but we 
find, using 31 x 31 x 31 mesh points, a steady solution at 
Re = 3200. 

Finally, in Fig. 13 the dimension of downstream 
secondary eddy D3 as a function of Re is shown. The present 
numerical results are compared with the experiments by 
[19], finding a very good agreement, in particular for 
Re < 2000. For Re larger than 2000 the behaviour is similar 
to that discussed by [19], but, due to the coarse mesh, 
the numerical values are sensibly different. In Fig. 13 the 
numerical 2D results [13] and quasi-2D experimental 
measurements [19] are also reported, showing that D, 
increase with Re in contrast with the 3D case. 

4.3. Parallel Speedup 

The results of parallelization of the program in terms of 
effectiveness is given in Table III for a typical 3D mesh of 
101 x 101 x 101. The most important parameter to analyze 

TABLE III 

Total Elapsed Time [s] and Speedup Ratio as a Function of 
the Number of Processors 

N EP P 

1 119.58 1.00 
2 63.29 1.89 
3 45.63 2.62 
4 37.00 3.23 
5 32.59 3.67 
6 30.14 3.97 

Note. The mesh is 101 x 101 x 101. 

Degree of Parallelism (a& Unbalanced Load (u,), and Total 
Amount (ap + u,) as a Function of the Number of Processors 

N a,xlOO u,x 100 (ap + u,) x 100 

2 94.2 1.3 95.5 
3 92.8 2.5 95.3 
4 92.1 3.7 95.8 
5 90.9 5.0 95.9 
6 89.8 6.0 95.8 

is the parallel speed-up ratio (p), defined as the ratio of one 
processor elapsed time to the parallel elapsed time (E,) 
using N processors: 

P=E,w= 1) 
EP * 

(22) 

A speedup value of 3.97 (see Table III) is obtained by 
running the code with all six processors available. Although 
far from the ideal speedup of six, this is a nice result for a 
fully vectorized code using a widely applicable methodol- 
ogy. The main reason of the limited value of the speedup is 
due to the unbalancing load among the different processors. 
In the present case, using a vector of 10,000 elements 
and a machine with a section size of 128, we have 
10,000/128 = 78 + 16/128, that is, 78 complete vector tasks 
and one incomplete. The 78 tasks are dispatched on the six 
processors and we have 13 complete tasks for the whole 
machine. The last incomplete task has to be solved on one 
processor with the other live waiting. A quantitative evalua- 
tion of this side effect is reported in Table IV. The effect of 
the unbalancing of processors load is particularly evident 
when working on a dedicated machine, but not on a 
multi-user environment, because in that situation the real 
load of each processor is not predictable. 

5. CONCLUSIONS 

The test case considered and the results obtained have 
highlighted several attractive features of the proposed 
vorticity-velocity method for the solution of the Navier- 
Stokes equations. 

l 1. The results are very accurate as is shown by the 
comparisons with available 3D numerical data for the cubic 
driven cavity flow. 

. 2. A mesh sensitivity analysis has been conducted for 
DOF form 92,256 to 2,509,446 at Re = 1000 showing a 
convergence speed to the asymptotic solution of the order 
of 1.7. 
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l 3. The solution algorithm, based on a false transient 
method is particularly efftcient and stable from the 
numerical point of view. 

l 4. The staggered mesh, the conservative formulation, 
and the particular discrete scheme adopted ensure that both 
vorticity and velocity fields are solenoidal everywhere in the 
problem domain. 

l 5. A parallel implementation of the method has been 
performed on a shared memory architecture mainframe. 
A speed up of 3.97 is obtained on a six-processor 
IBM3090VF/600E. 

l 6. Velocity profiles, particle tracks, and description 
of the overall flow structure in the cubic driven cavity are 
given for Re from 400 to 2000, at which the solution is found 
to be steady. 
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